C++: New and Improved!

Je
I
Last updte: 200906-15

This talk summarizes the additions and changes forthcoming in C++0X, the
next C++ standard. After briefly reviewing the C++ standards committee’s
approach, goals, and anticipated timeline for C++0X, we highlight several
dozen language and library features, including concepts, concurrency,
rvalue references, and uniform initialization syntax.

A little about me 2
* B.A. (math’s); M.S., Ph.D. (computer science).

* Professional programmer for nearly 40 years.
* Experienced in both academia and industry:

= Founded Comp.Sci. Dept.; served as Professor
and Dept. Head; taught/mentored at all levels.

= Managed/mentored programming staff for a computer reseller;
self-employed as a software consultant and commercial trainer.
* At Fermilab since 1996; now in Computing Division/FPE Quadrant,
specializing in C++ consulting and programming.
* Participant in the international C++ standardization process; Project
Editor for forthcoming Standard on Mathematical Special Functions.

* Be forewarned: Based on the above training and experience, | hold
some rather strong opinions about computer software and
programming methodology — these opinions are not shared by all
programmers, but they should be! ©

C++: New and Improved!

I
I

Walter E. Brown, Ph.D. <wb@fnal.gov>
Computing Division
£& Fermi National Accelerator Laboratory

2009-06-16
Copyright © 2007-2009 by Walter €. Brown. All rights reserved.

What do | mean by “new” and “improved” C++? 3

e Evolutionary advances via core language and standard
library features that:

= Extend or generalize C++03 behaviors, yet ...
= Interact well and compatibly with C++03 features.

e We designed these new and improved features to let us
create programs that are:
= Even closer to our problem domain (i.e., at higher levels of
abstraction), when that’s what we want to do.

= Even closer to our machines’ architecture (i.e., at lower
levels of abstraction), when that’s what we want to do.

Why should C++ change at all? £

¢ “[W]e (the members of the committee) desire change
because we hold the optimistic view that better language
features and better libraries lead to better code.”

= “more maintainable”

= “easier to read”

“catches more errors”

“faster”

“smaller”

“more portable”, etc.
e “People’s criteria differ, sometimes drastically.”

— Bjarne Stroustrup, 2006

WG21’s approach to C++ evolution 3

e General principles:

= Preserve source compatibility while improving performance.

= Support novices, since n, > n,

novices experts *
= Help programmers to write better programs:
¢ Maintain (and preferably increase) type safety.
* Keep to the zero-overhead principle.
e Removing a feature is only rarely feasible:

= Stability and compatibility are major concerns.

= |t's very hard to remove a feature without breaking %"gi]
somebody’s code, but: &

¢ Keyword auto is so rarely used that we gave it new semantics.

o Library’s auto_ptr<> is heavily used but has inherent issues, so
we deprecated it and provide/promote unique_ptr<> instead.

Je
S

e For the core language:
= Make C++ easier to teach and learn.
= Make the rules more general and more uniform.

= Make C++ better for building libraries;
prefer libraries over language extensions.

e For the standard library:

= Improve support for generic programming
and other programming paradigms (styles).

= Extend the library into new domains.
= Apply the new core language technologies.

i

Features’ status
¢ All have been formally adopted and balloted:
= Detailed spec’s are in the 2008-10 “Committee Draft” but ...

= Many details are still evolving, mostly in response to recent
Ballot Comments by ISO members (National Bodies).

¢ Implementation experience:

= Most features were based on existing practice in some
compiler/library.

= Quite a few were already in gcc 4.3.0 (released 2008-03).

= But a few features are still not fully implemented
anywhere, making some of us a bit nervous.) =

¢ Disclaimer: [9 |
= Technically, anything could still change.

S5ar

= |

Planned timeline 3

e WG21 hopes to “resolve” (respond to) Ballot Comments by
2009-10:

= Updated “Committee Draft” = “Final Committee Draft”

= SC22 balloting by ISO members planned for early 2010, then:
¢ Resolve any new FCD Ballot Comments, ...
¢ Updated “FCD” = “Final Draft International Standard” ...
® Final ballot at the JTC1 level.
¢ Hope to have the new C++ Standard out by very late 2010:
= Could still encounter technical resistance.
= Could still encounter political resistance.

= Could still encounter publishing delays.

Also forthcoming_....

¢ Some good library ideas/features have been delayed
simply for lack of time to work on them:

= Plan to issue these (e.g., in Technical Report form) ...
= After C++0X is finalized.
e But final balloting is already under way for:
= Adecimal arithmetic TR (core language and standard library).
= Aseparate International Standard for a mathematical special
functions standard library:

 First significant addition to <math.h> (and <cmath>) since ~1978.
« Initially proposed by Fermilab for TR1 (2005).
* | am the Project Editor for this Standard.

= Versions of both are already adopted by the C committee.

Final disclaimers 3

e Today’s survey of features emphasizes breadth over depth:

= Not a tutorial; simplifies or suppresses many details, and ...

= Omits all background discussion (rationale, design issues, ...),

= But identifies papers presenting such information ——
® At http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

¢ Keep in mind that C++0X isn’t designed to “fix” anything:

= |t's aimed at improving the C++ programming experience ...

By improving/extending the programmer’s standard toolkit.

“[T]he primary purpose of a programming language
is to help the programmer in the practice of his art.”
— C. A. R. Hoare, 1973

~NunNnZ

New types and corresponding literals
¢ New long long integral types, signed and unsigned:
= sizeof(long long) > sizeof(long).
= Corresponding literals, e.g., 42ULL.
¢ New pointer literal, nullptr, of type std::nullptr_t:
= A new name for the same null pointer value ...
= To avoid confusion with 0 as an int constant.
¢ New Unicode character and string types:
= A char can now hold a UTF-8 character.

= Acharl6_t, e.g., u'x', holds a UTF-16 character;
achar32_t, e.g., U'x', holds a UTF-32 character.
= u8"Hello" is a UTF-8 string literal;
u"Hello" is a UTF-16 string literal;
U"Hello" is a UTF-32 string literal.

BRoRZ

RPWANZ

[CENINTNY-4

i

New integer type aliases (from C99)

i

More C99-compatibility features

* Preprocessor additions:
= Variadic macros
= Empty macro arguments
= Concatenation of narrow/wide strings
e Library additions:
= Lots of additions to <cmath>, <cstdlib>, <cctype>
= |n <complex>: acos, asin, atan, acosh, asinh, atanh, fabs

= New <cfenv> to control the floating-point environment

w22

Ok Z

e All found in new library header <cstdint>: bll
= Names all have the form int---_t or uint---_t. g
= Required iff some type has the --- size/behavior. 5
Purpose Examples
Exact-width int64_t uint32_t
Minimum-width int_least64_t uint_least32_t
Fastest minimum-width int_fast64_t uint_fast32_t
Greatest-width intmax_t uintmax_t
13
_Syntax to improve utility of existing C++ features 2=
¢ Consecutive closing angle brackets now okay: “1‘
7
= typedef std::vector<std::vector<int>> Table; ;
e New for variant to iterate over a complete sequence:
sintaf] ={-};
for (int & x : a) //traverse entire array a, 1 element/iteration ’i‘
X *= 2; 3
9
= Works with any sequence that has explicit begin() and end() 4
(e.g., std::vectors) or implicit equivalent (e.g., arrays).
15
New flexibility in declaration syntax 3F
¢ Type deduction from initializers via auto: N
= std::vector<int>:iterator it = v.begin(); é
can now be written auto it = v.begin(); §
= Uses same type deduction rules already used for templates.
¢ New permitted function declaration syntax: hzl
= auto f(double) —> std::vector<double>; //“auto” =[] ? i
L 1
¢ Type queries via decltype (“declared-type-of”):
= typedef decltype(x *y) result_t;
= Especially useful in generic programming, when type ’i‘
interactions are often not known to the programmer: 3
3

¢ template<class T, class U >
auto product (Tt,Uu) —> decltype(t*u) {return t*u;}

o)

New syntax for common function definitions 3

e Compilers can today generate default definitions for some
c’tors, assignment op’s, and d’tors:

= But this happens only in the absence of your own def'ns.
= Can now define these member functions via = default .
o A class is today made non-copyable by declaring the copy
functions private, and not defining them:
= Can now define these (and more) functions via = delete .
= Calling a deleted function produces a compilation error.

= class C { //non-copyable
C() = default; //special mbrs only
C(Cconst &) delete ; // any function
C & operator = (Cconst &) = delete ;
b

arwNZ

Feature completion: compile-time assertions 3

* Known as static_assert(.-+, "---");

= Inspired by/augments run-time assert() macro
and compile-time #error directive.
= May appear at namespace, block, or class scope.
= Evaluated strictly at compile-time, so has no run-time cost.
e Takes a predicate and a string literal; emits the literal as a
diagnostic if the evaluated predicate is false:
= template< typename T >
struct Check
{ -
static_assert(sizeof(int) <= sizeof(T)
, "Check: type is too small");

OoONNRZ

i

Feature extension: template aliases

¢ Extends typedef notion.

* Adopts/extends alias-declaration syntax:
= Syntax used today for only namespace aliases.
= using identifier = type-id ;

¢ Now extended to templates:

= template< class >
struct A {--- };
template< class T >
using B = A<T>; // Bisnow an alias for template A

= ... B<int>--- //nowsame as A<int>

COUINNZ

Enhancements to constructors 3=

¢ A c’tor may now delegate to (make use of) another c’tor
from the same class:

= class C { ---
C():C(3.14) {}
C(double d) ---
b

aoORZ

e T && is notation for new rvalue reference types:
= C++03 reference types T & renamed Ivalue reference types.

= Allows code to distinguish between a memory cell (lvalue)
and its contents (rvalue).

¢ Enables move semantics (e.g., via std::move()):

= When copying is inappropriate or unnecessary or too
expensive, can now instead transfer resource ownership.

= class C { --- // movable
C(C&&); // “move c’tor” overload
C & operator=(C&&); // “move assignment” overload

b
¢ Also enables perfect forwarding (e.g., via std::forward()).

Feature completion: new reference types 3F

R RENZ

= Reduces/avoids duplication among c’tors within a class.

= Eliminates need for special initialization member functions,
since one of the c’tors can now serve this purpose.

o Aderived class may now inherit its c’tors from a base class: y
2

= class D : public B { --- 2
using B::B; // declare (inherit) B’s non-default, non-copy c’tors ¢

b

20

Generalization: compile-time constant expressions 3%

¢ Means of declaring that an expression (not necessarily
integral) be evaluated by the compiler whenever possible:

uweoNZ

= Can declare constexpr variables and (within limits) functions.

= constexpr double sqr(double x) { return x *x; }
constexpr double gamma = sqr(2.5);

¢ Evaluated at compile time iff the argument can itself be

Enhancements to initialization 3

e Class member initializers:

Today limited to static data members of integral type.

Now extended to non-static and non-integral data members.

Avoids gratuitous inconsistencies between c’tors.

classC { ---
private:
double d = 3.14;
c* p = nullptr;
%

e Uniform initialization syntax (see next 2 pages).

NN Z

23

evaluated at compile time:
= double const alpha = 2.5;

constexpr double gamma = sqgr(alpha); //okay
= extern double beta;

constexpr double deltal = sqr(beta); //error!
double const delta2 = sqr(beta); // okay; runtime

Generalization: uniform initialization syntax =
¢ How can we initialize a variable of type T with a value v?
=Ttl =y // copy-initialization (copy c’tor or equivalent)
T t2(v); // direct-initialization
T t3 = {v};, //initialize from C-style initializer list
T t4 = T(v); // make a T out of v, then copy that T to t4

= Today, different definitions of Tallow 0, 1, 2, 3, or all 4
of these definitions to compile for identical v!

o Every C++0X initialization now accepts a { --- } initializer:

= To initialize free, base, member, or newed objects, as well as
function parameters and return expressions.

= Syntax also accommodates new type std::initializer_list< T >.

RPWUOINZ

= Syntax also addresses some long-standing issues, such as:
* The desire to initialize a std:vector< > with a sequence of values.
* The “most vexing parse”: T x(); //does not default-initialize x!)

Uniform initialization syntax at work =
e Tv=1{127314}; // a free automatic variable
T*p =newT{1,2,3.14}; //adynamically-created variable
e void f1(T); f1({1,2,3.14}); //pass by-value
void f2(Tconst &); f2({1,2,3.14}); //pass by-const-Iref
void f3(T&); f3({1,2,3.14}); //error: pass by-Iref
void f4(T &&); fa({1,2,3.14}); //pass by-rref

e Tg(){return{1,2,3.14};} //returnby-value

e classD : publicT {

Tm;

D():T{1,2,3.14},m{1,2,3.14} { } //base, member
13

Concepts at work 3

* // Articulate requirements/constraints for a type T:
concept std::Swappable< typename T >
{ void swap(T &, T&); };

s //Impose requirements on the type used to instantiate this algorithm;
// implement the algorithm using only those requirements:
template< typename T >
void fancy_sort(T * from, T * upto)
requires std::Swappable<T>
{ -5 swap(*p,*q); -+ }
* // Define how int will meet the Swappable requirements:
concept_map std::Swappable<int >
{ void swap(int & t1,int& t2) { std::swap(t1,t2); } }

* //Instantiate the algorithm on int; okay since int is Swappable:
fancy_sort<int>(a+0,a+n);

New language feature: concepts 3=

¢ Inspired by standard library’s requirements tables:
= Concepts are notionally described as a type system for types.

= Leads to vastly improved diagnostics when an algorithm is
instantiated with a type not matching the algorithm’s needs.

¢ The core language provides mechanisms to:
= Articulate a set of requirements/constraints for a type, ...
= |Impose, a priori, such requirements on a template, and ...
= Define how a type meets such requirements.

¢ The standard library provides:

= A library of standard concepts (mostly replacing today’s
extra-linguistic requirements tables), and ...

= Concept-based requirements for each standard algorithm.

wNNNZ

PNwWNNZ

New feature: concurrency 3F
¢ Intended to standardize support for:

Multi-core processors.

Client-server programming.

Current POSIX and Windows standards re OS threads and
shared memory ...

But not replace other standards (e.g., MPL, OpenMP, ...).

¢ The core language now answers such questions as:
= What does it mean to have two threads sharing memory?
= How does this affect variables?
¢ The standard library now answers such questions as:
= How are threads created/synchronized/terminated?
= How are exceptions handled between threads?

Concurrency in the core language =
e Uses “loosely-coupled shared memory” as a model:
= Today’s hardware does not support stronger coupling.

cmaNZ

= A data race (e.g., multiple threads updating a single object)
will evoke undefined behavior if not protected.

= Selected atomic (indivisible) operations are provided and
also have a library-style interface.

¢ New thread lifetime storage duration:

= New keyword thread_local indicates that a static variable is
to go away when its thread ends.

vuaNnZ

= Avariable declared thread_local static has a single instance
per thread (whether at namespace, block, or class scope).

29

i

Concurrency in the standard library
¢ Thread instantiation via basic std::thread type:
= Supports creation and join() operations.
= Supports standard access to OS-specific details.
= Supports thread synchronization:
@ Via variables of type mutex, as well as ...
@ Via condition variables.
¢ Thread termination is voluntary:
= Synchronous in all cases, with no interrupts permitted.

= Typical thread termination is via return from the function
called when the thread was initiated.

~NoANZ

30

i

Saying hello

#include <iostream>

void greet() {
std::cout << "Hello, world!\n"

}
// In a serial world: // In a parallel world:
#include <thread>
int main() { int main() {
greet(); std::thread t{greet};
return 0; t.join();
} return 0;
}
31
Monomorphic lambda expressions and closures =
¢ Anonymous function objects (lambdas): N
= Definable at point of use. H
= May be local to (nested within) another scope, and can g

capture (use) local variables by value or by reference.
= Feature loosely based on Alonzo Church’s A-calculus [1936].
e Examples:

= std::transform(v.begin(), v.end(), v.begin()
, [1(double x) {return x+pi();});

= auto add_pi_to = [](double x) {return x+pi();};
std::transform(v.begin(), v.end(), v.begin()

And there's still more! =
¢ Variadic template parameters: N
2
= Now possible to define a template taking a variable number g
of template parameters (a “parameter pack”). 0

= Useful to implement library facilities, e.g., std::tuple< >.
e Strongly-typed enums (also termed scoped enums):
= enumclassE : long {E1, E2,E3=100,E4 /*=101*/};

= E1, et al., are exclusively in E’s scope (i.e., E::E1).

ENFNIND-S

= Enumerators have an underlying integral representation,
whose type the programmer may optionally specify.

e All template parameters may now have defaults:

= template< class T = long double > // not allowed in C++03
T pi() {return 3.1415926535897932384626433L; }

[SINSINEY YY)

«
8

, add_pi_to);
33
And I've barely mentioned the standard library 3

¢ Random number engines and distributions (by Fermilab!).
¢ Regular expressions.

e Type traits (for template metaprogramming).

Posix-related enhancements to standard exceptions.

Generic callable wrapper function< > and binder bind< >.
e Smart pointers: shared_ptr< >, unique_ptr< >.

e Containers: array< >, tuple< >, and forward_list< >.

¢ Hash tables: unordered_map< >, unordered_set< >, etc.

e Concurrency support: atomic< >s, threads, mutexes, etc.

¢ New variadic min(), max(), and new minmax() algorithms.

o)

And yet more language additions, improvements, ... 3¢

¢ Relaxation of POD restrictions; new notion of trivial type.

¢ New alignof (---) data alignment support.

* Raw string literals.

¢ Extension to obtain the size of a data member via sizeof.
¢ Extensible (user-defined) literals.

¢ Generalized attribute declarations.

¢ Improvements to union (“Toward a More Perfect Union”).
e Conversion operators may now be declared explicit.

¢ Extended friend declarations.

e (99 preprocessor semantics.

Summary. 3

¢ Lots and lots of useful improvements are coming in C++0X:

= Missing a few hoped-for items (e.g., garbage collection), ...
= But WG21 already has a heavy workload.

e Compilers (e.g., gcc) and libraries (e.g., Boost) already have
very many of the new features available:

= We can start now to learn/try out the new features, and ...

= We can start now our planning for a transition.

“C++ is a general purpose programming language
for enjoyable programming by serious programmers.”
— Bjarne Stroustrup, 1991

36

C++: New and Improved!

FIN

I
I

Walter E. Brown, Ph.D. <wb@fnal>
Computing Division
£& Fermi National Accelerator Laboratory

2009-06-16
Copyright © 2007-2009 by Walter E. Brown. All ights reserved.

